Skip to main content

DATAFRAME IMP QUESTIONS

 


QUE. Consider the following CORONA DataFrame and answer the questions given below:

ID

State

Cases

100

Delhi

3000

110

Mumbai

4000

120

Chennai

5000

130

Surat

4500

Create the above dictionary and DataFrame with given data and perform the following operations:

(a) Write code to add a new column named 'Recovery' using the Series method. This column should store the number of patients recovered in each state. (Assume appropriate values)

(b) Add a new column named 'Deaths' using the assign() method to store the number of deaths in each state. (Assume values)

(c) Add a new row using loc[] to store details of another state. (Assume values)

(d) Add a new column named 'Percentage' using the insert() method. This column should store the percentage of recovery in each state and must be added as the fourth column of the DataFrame. (Assume values)

(e) Delete the column 'Percentage' using the del command.

(f) Delete the column 'Deaths' using the pop() method.

(g) Insert a new row using iloc[] method at the first position (i.e., index 0). (Assume values)

(h) Temporarily delete the columns 'Cases' and 'State' from the DataFrame without modifying the original.

 Sol:

  import pandas as pd

# Creating the dictionary

data = {

    'ID': [100, 110, 120, 130],

    'State': ['Delhi', 'Mumbai', 'Chennai', 'Surat'],

    'Cases': [3000, 4000, 5000, 4500]

}

CORONA = pd.DataFrame(data)

 (a) Add a new column 'Recovery' using the Series method

recovery = pd.Series([2800, 3700, 4700, 4200])

CORONA['Recovery'] = recovery

(b) Add a new column 'Deaths' using the assign() method

CORONA['Deaths'] = [150, 180, 200, 250, 190]

(c) Add a new row using loc[] (e.g., for Bangalore)

CORONA.loc[4] = [140, 'Bangalore', 4800, 4600, 190]

(d) Add a column 'Percentage' using the insert() method (at index 3)

percentage = [93.3, 92.5, 94.0, 93.3, 95.8]

CORONA.insert(3, 'Percentage', percentage)

(e) Delete the column 'Percentage' using del

del CORONA['Percentage']

(f) Delete the column 'Deaths' using pop() method

CORONA.pop('Deaths')

(g) Insert a new row using iloc[] at the 1st position

new_row = [150, 'Hyderabad', 4200, 4000]

# Insert at position 0

CORONA.loc[-1] = new_row        # Add the new row with a temporary index

CORONA.index = CORONA.index + 1 # Shift all indexes by 1

CORONA = CORONA.sort_index()    # Sort by index to reorder

(h) Temporarily delete 'Cases' and 'State' (without modifying original)

temp_df = CORONA.drop(['Cases', 'State'], axis=1)

print(temp_df)


QUE 2:

Consider the following EMPLOYEE DataFrame and answer the questions given below:

EmpID

Name

Department

Salary

101

Amit

HR

40000

102

Neha

IT

55000

103

Raj

Finance

50000

104

Priya

IT

60000

Create the above dictionary and DataFrame with given data and perform the following operations:

(a) Add a new column named Bonus using the Series method. (Assume values for each employee)

(b) Add a new column named Tax using the assign() method. (Assume values for each employee)

(c) Add a new row using loc[] to store details of another employee. (Assume values)

(d) Delete the column NetSalary using the del command.

(e) Delete the column Tax using the pop() method.

 Sol:

import pandas as pd

# Creating the dictionary

data = {

    'EmpID': [101, 102, 103, 104],

    'Name': ['Amit', 'Neha', 'Raj', 'Priya'],

    'Department': ['HR', 'IT', 'Finance', 'IT'],

    'Salary': [40000, 55000, 50000, 60000]

}

EMPLOYEE = pd.DataFrame(data)

print("Initial DataFrame:\n", EMPLOYEE)

 

# (a) Add a new column 'Bonus' using the Series method

bonus = pd.Series([5000, 7000, 6500, 8000])

EMPLOYEE['Bonus'] = bonus

print("\nAfter adding Bonus column:\n", EMPLOYEE)

 

# (b) Add a new column 'Tax' using assign() method

EMPLOYEE = EMPLOYEE.assign(Tax=[4000, 5500, 5000, 6000])

print("\nAfter adding Tax column:\n", EMPLOYEE)

 

# (c) Add a new row using loc[] (for example, for employee Sanya)

EMPLOYEE.loc[4] = [105, 'Sanya', 'HR', 45000, 6000, 4500]

print("\nAfter adding a new row using loc[]:\n", EMPLOYEE)

 

# (d) Delete the column 'NetSalary' using del

del EMPLOYEE['NetSalary']

print("\nAfter deleting NetSalary column:\n", EMPLOYEE)

 

# (e) Delete the column 'Tax' using pop() method

EMPLOYEE.pop('Tax')

print("\nAfter deleting Tax column:\n", EMPLOYEE)

 

 

 


Comments

Popular posts from this blog

PYTHON - MYSQL CONNECTIVITY CODE

  #INSERTION OF DATA import mysql.connector mydb = mysql.connector.connect( host="localhost", user="root", passwd="root", database="school" ) print("Successfully Connected") #print(mydb) mycursor=mydb.cursor()   v1=int(input("enter ID:")) v2=input("enter name:") v3=input("enter Gender:") v4=int(input("enter age:")) sql='insert into TEACH values("%d","%s","%s","%s")'%(v1,v2,v3,v4) print(sql) mycursor.execute(sql) mydb.commit() print("record added") #MYSQL Connection code – Deletion on database SOURCE CODE: s=int(input("enter id of TEACHER to be deleted:")) r=(s,) v="delete from TEACH where id=%s" mycursor.execute(v,r) mydb.commit() print("record deleted") MYSQL Connection code – Updation on database SOURCE CODE: import mysql.connector mydb = mysql.connector.c...

REVISION IF CONSTRUCT | CLASS TEST

                                                                                     CLASS TEST 1. Write a Python program that asks the user for their age, gender, and current fitness level (beginner, intermediate, or advanced). Based on this information, suggest a suitable fitness plan using if-else statements. Requirements: Inputs : Age (integer) Gender (male/female) Fitness level (beginner/intermediate/advanced) Outputs : Recommend a fitness plan that includes: Suggested workout duration. Type of exercises (e.g., cardio, strength, flexibility). Rest days. Logic : Use if-else to determine the plan based on conditions such as: Age group (e.g., <18, 18–40, >40). Fitness leve...