Skip to main content

DATAFRAMES - MERGE & CONCAT | GRADE XII | 7 NOV


CONCATENATE DATAFRAMES

GRADE XII


#The concat() function is used to join more than one dataframe into one unit. 

#You can combine dataframes having similar structures.

import pandas as pd

'''

df1 = pd.DataFrame(

    {

        "A": ["A0", "A1", "A2", "A3"],

        "B": ["B0", "B1", "B2", "B3"],

        "C": ["C0", "C1", "C2", "C3"],

        "D": ["D0", "D1", "D2", "D3"],

    },

    index=[0, 1, 2, 3],)


df2 = pd.DataFrame(

    {

        "A": ["A4", "A5", "A6", "A7"],

        "B": ["B4", "B5", "B6", "B7"],

        "C": ["C4", "C5", "C6", "C7"],

        "D": ["D4", "D5", "D6", "D7"],

    },

    index=[4, 5, 6, 7])


df3 = pd.DataFrame(

    {

        "A": ["A8", "A9", "A10", "A11"],

        "B": ["B8", "B9", "B10", "B11"],

        "C": ["C8", "C9", "C10", "C11"],

        "D": ["D8", "D9", "D10", "D11"],

    },

    index=[8, 9, 10, 11])


frames = [df1, df2, df3]


result = pd.concat(frames)

print(result)


result1 = pd.concat([df1, df3], axis=1) # Concat Columnwise

print(result1)

print("*"*40)


result2 = pd.concat([df1, df3], axis=0) # concat row wise

print(result2)


print("*"*40)

result3 = pd.concat([df1, df3], ignore_index=True)

print(result3)

'''

'''

#You can add ignore_index = true to avoid using the same original index of dataframes. 


dt_sc=({'English':[74,79,48,53,68,44,65,67],

         'Physics':[76,78,80,76,73,55,49,60],

         'Chemistry':[57,74,55,89,70,50,60,80],})

xii_1=pd.DataFrame(dt_sc)


dt_co=({'English':[66,65,87,56,86,44,56,76],

         'Physics':[67,87,80,67,77,55,45,80],

         'Chemistry':[75,47,55,98,70,50,60,80],})

xii_2=pd.DataFrame(dt_co)


xii=pd.concat([xii_1,xii_2])

#print(xii)

#You can add ignore_index = true to avoid using the same 

#original index of dataframes

#observe the output

xii=pd.concat([xii_1,xii_2],ignore_index=True)

print(xii)

'''


#It is used to merge two dataframes that have some common values. 

#You can specify the fields as on parameter in the merge() function. 

#It follows the concept of RDBMS having parent column and child columns in the dataframe. 

#One column should have common data. 


p1=({'P_ID':[1,2,5,4,5],

         'First_Name':['Sachin','Saurav','Virendra','Mahendra Sinh','Gautam'],

         'Last_Name':['Tendulker','Ganguly','Sehvag','Dhoni','Gambhir']})

d1=pd.DataFrame(p1)

print(d1)

print("*"*40)


p2=({'P_ID':[1,2,3,4,5],

         'Runs':[18987,12120,11345,10345,12789]})

d2=pd.DataFrame(p2)

print(d2)

print("*"*40)

players=pd.merge(d1,d2)

print(players)


'''


# MERGING OF DATAFRAMES

left = pd.DataFrame(

    {

        "key": ["K0", "K1", "K2", "K3"],

        "A": ["A0", "A1", "A2", "A3"],

        "B": ["B0", "B1", "B2", "B3"],

    }

)

right = pd.DataFrame(

    {

        "key": ["K0", "K1", "K2", "K3"],

        "C": ["C0", "C1", "C2", "C3"],

        "D": ["D0", "D1", "D2", "D3"],

    }

)

#result = pd.merge(left, right, on="key")

result = pd.merge(left, right)

print(result)

# Define a dictionary containing employee data 

data1 = {'key': ['K0', 'K1', 'K2', 'K3'],

         'key1': ['K0', 'K1', 'K0', 'K1'],

         'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 

        'Age':[27, 24, 22, 32],} 

   

# Define a dictionary containing employee data 

data2 = {'key': ['K0', 'K1', 'K2', 'K3'],

         'key1': ['K0', 'K0', 'K0', 'K0'],

         'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj'], 

        'Qualification':['Btech', 'B.A', 'Bcom', 'B.hons']} 

 

# Convert the dictionary into DataFrame  

df = pd.DataFrame(data1)

print("*"*40)

# Convert the dictionary into DataFrame  

df1 = pd.DataFrame(data2) 

print(df, "\n\n", df1) 

print("*"*40)

#Now we merge dataframe using multiple keys # merging dataframe using multiple keys

res1 = pd.merge(df, df1, on=['key', 'key1'])

print(res1)

#print("*"*40)

#res = pd.merge(df, df1, how='left', on=['key', 'key1'])

#print(res)

print("*"*40)

res = pd.merge(df, df1, how='right', on=['key', 'key1'])

print(res)


#In order to join dataframe, we use .

#join() function this function is used for combining the columns of two 

#potentially differently-indexed DataFrames into a single result DataFrame.

 # Define a dictionary containing employee data 

data1 = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'], 

        'Age':[27, 24, 22, 32]} 

    

# Define a dictionary containing employee data 

data2 = {'Address':['Allahabad', 'Kannuaj', 'Allahabad', 'Kannuaj'], 

        'Qualification':['MCA', 'Phd', 'Bcom', 'B.hons']} 

  

# Convert the dictionary into DataFrame  

df = pd.DataFrame(data1,index=['K0', 'K1', 'K2', 'K3'])

# Convert the dictionary into DataFrame  

df1 = pd.DataFrame(data2, index=['K0', 'K2', 'K3', 'K4'])

# joining dataframe

res = df.join(df1)

print(res)

 print(df, "\n\n", df1)


Comments

Popular posts from this blog

PYTHON - MYSQL CONNECTIVITY CODE

  #INSERTION OF DATA import mysql.connector mydb = mysql.connector.connect( host="localhost", user="root", passwd="root", database="school" ) print("Successfully Connected") #print(mydb) mycursor=mydb.cursor()   v1=int(input("enter ID:")) v2=input("enter name:") v3=input("enter Gender:") v4=int(input("enter age:")) sql='insert into TEACH values("%d","%s","%s","%s")'%(v1,v2,v3,v4) print(sql) mycursor.execute(sql) mydb.commit() print("record added") #MYSQL Connection code – Deletion on database SOURCE CODE: s=int(input("enter id of TEACHER to be deleted:")) r=(s,) v="delete from TEACH where id=%s" mycursor.execute(v,r) mydb.commit() print("record deleted") MYSQL Connection code – Updation on database SOURCE CODE: import mysql.connector mydb = mysql.connector.c...

GRADE XII CS - VIVA QUESTIONS

  VIVA QUESTIONS GRADE XII CS Dear All Be thorough with your project and practical files, as the viva can be asked from anywhere. Stay calm, don’t get nervous, and be confident in front of the examiner. 1. Tell me about your project. 2. Which concepts you have used for your project? 3. What do you mean by front end and back end? How they are important in developing any such projects? 4  Mention the modules and built-in functions you have used in your project. 5. Which real world problems are solved by your project? 6. Explain the most important feature of your project. 7. Name a few mutable data types of python. Lists, Sets, and Dictionaries 8. Name a few immutable data types of python. Strings, Tuples, Numeric 9. Name ordered and unordered data type of python. Ordered – String, List, Tuples Unordred – Set, Dictionaries 10. What is the significance of a pass statement in python? pass is no operation python statement. This is used where python requires syntax but logic requires...